Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae.

نویسندگان

  • M L Rolfsmeier
  • M J Dixon
  • L Pessoa-Brandão
  • R Pelletier
  • J J Miret
  • R S Lahue
چکیده

Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming ability is thought to promote instability by inhibiting DNA repair. To understand these cis-elements further, TNR expansions and contractions were monitored by yeast genetic assays. A threshold of approximately 15--17 repeats was observed for CTG expansions and contractions, indicating that thresholds function in organisms besides humans. Mutants lacking the flap endonuclease Rad27p showed little change in the expansion threshold, suggesting that this element is not altered by the presence or absence of flap processing. CNG or GNC sequences yielded frequent mutations, whereas A-T rich sequences were substantially more stable. This sequence analysis further supports a hairpin-mediated mechanism of TNR instability. Expansions and contractions occurred at comparable rates for CTG tract lengths between 15 and 25 repeats, indicating that expansions can comprise a significant fraction of mutations in yeast. These results indicate that several unique cis-elements of human TNR instability are functional in yeast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence.

Alterations in the length (instability) of gene-specific microsatellites and minisatellites are associated with at least 35 human diseases. This review will discuss the various cis-elements that contribute to repeat instability, primarily through examination of the most abundant disease-associated repetitive element, trinucleotide repeats. For the purpose of this review, we define cis-elements ...

متن کامل

Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.

A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functio...

متن کامل

Identification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae.

Trinucleotide repeats (TNRs) undergo frequent mutations in families affected by TNR diseases and in model organisms. Much of the instability is conferred in cis by the sequence and length of the triplet tract. Trans-acting factors also modulate TNR instability risk, on the basis of such evidence as parent-of-origin effects. To help identify trans-acting modifiers, a screen was performed to find...

متن کامل

CTCF cis-Regulates Trinucleotide Repeat Instability in an Epigenetic Manner: A Novel Basis for Mutational Hot Spot Determination

At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tr...

متن کامل

Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae.

The genome of Saccharomyces cerevisiae contains numerous unstable microsatellite sequences. Mononucleotide and dinucleotide repeats are rarely found in ORFs, and when present in an ORF are frequently located in an intron or at the C terminus of the protein, suggesting that their instability is deleterious to gene function. DNA trinucleotide repeats (TNRs) are found at a higher-than-expected fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 157 4  شماره 

صفحات  -

تاریخ انتشار 2001